Analysis of New Aggregation Operators: Mean 3Π

نویسندگان

  • Andrei Doncescu
  • Sebastien Regis
  • Katsumi Inoue
  • Richard Emilion
چکیده

Knowledge based systems need to deal with aggregation and fusion of data with uncertainty. To use many sources of information in numerical forms for the purpose of decision or conclusion, systems suppose to have tools able to represent the knowledge in a mathematical form. One of the solutions is to use fuzzy logic operators. We present in this article an improvement of the triple Π operator introduced by Yager and Rybalov, which is called mean 3Π. Whereas triple Π is an operator completely reinforced, the presented operator is a mean operator, which makes it more robust to noise.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Power harmonic aggregation operator with trapezoidal intuitionistic fuzzy numbers for solving MAGDM problems

Trapezoidal intuitionistic fuzzy numbers (TrIFNs) express abundant and flexible information in a suitable manner and  are very useful to depict the decision information in the procedure of decision making. In this paper, some new aggregation operators, such as, trapezoidal intuitionistic fuzzy weighted power harmonic mean (TrIFWPHM) operator, trapezoidal intuitionistic fuzzy ordered weighted po...

متن کامل

On the use of Heronian means in a similarity classifier

This paper introduces new similarity classifiers using the Heronian mean, and the generalized Heronian mean operators. We examine the use of these operators at the aggregation step within the similarity classifier. The similarity classifier was earlier studied with other operators, in particular with an arithmetic mean, generalized mean, OWA operators, and many more. The two classifiers here ar...

متن کامل

Trapezoidal intuitionistic fuzzy prioritized aggregation operators and application to multi-attribute decision making

In some multi-attribute decision making (MADM) problems, various relationships among the decision attributes should be considered. This paper investigates the prioritization relationship of attributes in MADM with trapezoidal intuitionistic fuzzy numbers (TrIFNs). TrIFNs are a special intuitionistic fuzzy set on a real number set and have the better capability to model ill-known quantities. Fir...

متن کامل

Negations and aggregation operators based on a new hesitant fuzzy partial ordering

Based on a new hesitant fuzzy partial ordering proposed by Garmendia et al.~cite{GaCa:Pohfs}, in this paper a fuzzy disjunction ${D}$ on the set ${H}$ of finite and nonempty subsets of the unit interval and a t-conorm ${S}$ on the set $bar{{B}}$ of equivalence class on the set of finite bags of unit interval based on this partial ordering are introduced respectively. Then, hesitant fuzzy negati...

متن کامل

Triangular Intuitionistic Fuzzy Triple Bonferroni Harmonic Mean Operators and Application to Multi-attribute Group Decision Making

As an special intuitionistic fuzzy set defined on the real number set, triangular intuitionistic fuzzy number (TIFN) is a fundamental tool for quantifying an ill-known quantity. In order to model the decision maker's overall preference with mandatory requirements, it is necessary to develop some Bonferroni harmonic mean operators for TIFNs which can be used to effectively intergrate the informa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007